سیماب توس Simab toos co

میکروسکوپ

درباره میکروسکوپ

میكروسكوپ از دو واژه یونانی میكرو, به معنی كوچك و سكوپ, به معنی دیدن, گرفته شده است. بنابراین میكروسكوپ یعنی دیدن چیزهای كوچك. یكی از موجودات كوچك زنده كه دانشمندان بیش از همه آن را مورد مطالعه قرار دادند كك بود. برای همین بود كه اسم اولین میكروسكوپ ها را شیشه های کكی گذاشته بودند. 

قبل از اختراع میكروسكوپ در اواسط قرن هفدهم, مشاهده سلول مقدور نبود, زیرا سلول واحد بسیار كوچكی است كه با چشم غیر مسلح قابل رویت نیست. روبرت هوك اول بار در سال 1665 زیر میكروسكوپ ابتدایی كه خود ساخته بود سلولهای مرده را در  برش های چوب پنبه و نوعی كمك مشاهده كرد. این سلولهای تو خالی و متصل به هم, شكل اتاقكهای لانه زنبور را داشتند و هوك آنها را سلولی نامید كه به زبان لاتین مفهوم اتاقكهای كوچك را دارد.

 چند سال بعد طبیعت شناسی بنام آنتونی وان لیوون هوك سلولهای زنده را در قطره های آبی كه از بركه برداشته بود در زیر میكروسكوپ مشاهده كرد و آنها را جانوران كوچك نامید. او چند نمونه خشك شده خود را بین سالهای 1674 و 1687 به فرهنگستان سلطنتی لندن فرستاد.لیوون هوك بر روی هم توانست 419 میكروسكوپ و عدسی بسازد. او هر بار كه عدسی یا میكروسكوپ بهتری می ساخت, می توانست میكرو ارگانیسم های كوچك تری ببینید.درسال 1683 میلادی, عدسی دیگری ساخت كه می توانست چیزهای خیلی كوچك را نشان دهد. لیوون هوك فكر می كرد كه این چیزهای خیلی كوچك باید موجودات زنده ای باشند. ولی این چیزها به قدری كوچك بودند كه فقط مثل نقطه ها و میله های كوچكی به نظر می آمدند. او نمی توانست عدسی دیگری بسازد كه آن قدر قوی باشد كه بتواند آنها را واضح نشان دهد. این بود كه ناچار مطالعه آنها را رها كرد.بعدها این چیزهای كوچك را كه او نخستین بار دید باكتری نامیدند. باكتری از واژه ای یونانی به معنی میله كوچك گرفته شده است. لیوون هوك نخستین كسی بود كه میكروب ها را دید, و تا صد سال بعد هیچ كس دیگری پیدا نشد كه بتواند كاری بهتر از او انجام دهد. سر انجام, در سالهای دهه 1780 میلادی, اوتوفریدریك مولر, زیست شناس دانماركی ترتیبی داد كه میكروب ها اندكی واضح تر نشان داده شوند. او نخستین كسی بود كه كوشید تا باكتری ها را برحسب شکل های متفاوت آن ها به گروه های مختلف تقسیم كند.

میکروسکوپ های پلاریزان 

در بسیاری از مطالعات میکروسکوپی مثل مطالعه سنگ ها ، مواد شیمیایی کریستالی و بسیاری از ترکیبات آلی مثل ساختمان کراتین ، عضلات ، کلاژن ها نیاز به استفاده از میکروسکوپ های پلاریزان می‌باشد. جز اینها در مطالعات میکروسکوپی پلاریزان نور پلاریزه می‌باشد.

نور پلاریزهنور معمولی متشکل از فوتونها هستند دارای بردارهای الکتریکی و مغناطیسی عمود بر هم می‌باشند. این دو میدان بطور سینوسی در حال نوسان می‌باشند و در ضمن در جهت عمود بر صفحه دو میدان و یا صفحه ارتعاشات این دو منتشر می‌شوند. ارتعاشات میدان الکتریکی نور غیر پلاریزه در یک نقطه در همه جهات می‌باشد. اکثر مواد شیشه‌ای و بسیاری از مواد دارای این ویژگی هستند که وقتی یک دسته پرتو نوری به آنها وارد شود در آن صورت سرعت انتشار و نحوه انتشار نور در جهات مختلف در آنها مشابه و یکسان می‌باشد و تنها تغییری که در نحوه حرکت دسته پرتو ضمن عبور از این مواد حاصل می‌شود آن است که بر اساس قوانین اسنل مسیر و جهت آنها نسبت به قبل از ورودشان به آن ماده تغییر می‌کند. اینگونه مواد را مواد ایزوتروپیک (isotropic) می‌نامند. مواد ایزوتروپیک در همه جهات دارای ضزیب شکست مشابه هستند.بعضی مواد شفاف و نیمه شفاف دارای دو ضریب شکست می‌باشند، یعنی نحوه انتشار نور در داخل این مواد در جهات مختلف متفاوت است. وقتی که یک دسته پرتو نوری به داخل این گونه مواد وارد می‌شود اگر نور غیر پلاریزه باشد در آن صورت به دو دسته پرتو تقسیم می‌شود. این دو دسته پرتو در جهات عمود بر هم حرکت می‌کنند و ارتعاشات میدان الکتریکی آْنها کاملا بر هم عمود می‌باشد. هر دسته پرتو بنام نور پلاریزه شده و صفحه ارتعاش آنها را صفحه پلاریزاسیون می‌نامند. موادی که دارای این چنین خاصیتی هستند بنام مواد غیر ایزوتوپ می‌نامند. بعضی مواقع نیز اینگونه مواد را مواد با ضریب شکست دو گانه می‌نامند. در بررسیهای پلاریزاسیون لازم است که ما نور پلاریزه داشته باشیم این عمل را بوسیله یک صفحه پلاریزور می‌توان انجام داد. نور خارج شده از صفحه پلاریزور یک نور پلاریز است. میدان الکتریکی این فوتون ها تنها در امتداد محور پلاریزاسیون صفحه پلاریزور ارتعاش می‌نماید.

روشهای تولید نور پلاریزه

نور پلاریزه را می توان به طرق مختلف ایجاد نمود. روشهای معمول عبارتند از:

بازتابش   -  شکست مضاعف   -   جذب انتخابی   -  پراکندگی

در اینجا دو روش ایجاد نور پلاریزه مورد نیاز در میکروسکوپهای پلاریزان را مختصرا توضیح می‌دهیم:

منشور نیکولاین منشور از بلور کلسیت درست شده است (کلسیت یا کربنات کلسیم). نور هنگام عبور از بلور کلسیت به دو دسته پرتو تجزیه می‌شود به گونه‌ای که اگر این بلور را مثلا بر روی نوشته‌ای قرار دهیم نوشته‌ها بصورت مضاعف دیده می‌شود. نور وارد شده به کلسیت به دو دسته پرتو تجزیه می‌شود، که یکی تابع قوانین اسنل است که آنرا شعاع عادی می‌نامند. دسته پرتو دیگر از قوانین نور عادی پیروی نمی‌کند لذا به آن پرتو غیر عادی گویند. مسیر نور عادی و نور غیر عادی و همچنین سرعت انتشار این دو دسته پرتو با همدیگر متفاوت است، البته هر دو دسته پرتو نور پلاریزه می‌باشند.منشور نیکول (Nicol) بدین گونه ساخته می‌شود که یک بلور کلسیت را در امتداد قطرش برش می‌دهند سپس قطعات بدست آمده را بوسیله صمغ مخصوصی بنام صمغ کانادا (Canada blasm) به همدیگر می‌چسبانند. ضریب شکست این ماده 55/1 است که از ضریب شکست کلسیت برای شعاع عادی 656/1n= کمتر است و از ضریب شکست شعاع غیر عادی 482/1=n بیشتر می‌باشد. لذا وقتی که نور به محل اتصال دو نیمه می‌رسد نور غیر عادی انعکاس کلی پیدا می‌کند و تنها نور عادی از آن خارج می‌شود و بنابراین نور خارج شده یک دسته پرتو پلاریزه شده می‌باشد. می‌توان پلاریزه بودن نور خارج شده را بوسیله یک منشور دوم امتحان نمود. در صورتی که دو منشور نیکل به موازات همدیگر قرار گیرند نور خارج شده از اولی بدون تغییر از دومی نیز خارج می‌شود و در صورتی که محور پلاریزاسیون آنها عمود بر هم قرار گیرند نور پلاریزه خارج شده از اولی از دومی عبور نمی‌نماید.

تورمالیننوع دیگری از پلاریزورها که بر اساس جذب انتخابی عمل می‌کنند موادی مثل تورمالین می‌باشند. اینگونه مواد وقتی نور غیرپلاریزه به آنها بتاید پس از ورود مثل بلور کلسیت در آن شکست مضاعف اتفاق می‌افتد و لیکن شعاع عادی آن در صورت ضخامت کافی بلور کاملا در داخل بلور جذب می‌شود و شعاع غیر عادی از بلور خارج می‌شود. بنابراین بلور تورمالین ارتعاشات را در یک راستا جذب و ارتعاشات در جهت عمود بر آن را عبور می‌دهد. این خاصیت تورمالین مربوط به ساختمان ملکولی آن می‌باشد. ماده تورمالین را نمی‌توان به جای منشور نیکول استفاده نمود، بخاطر آنکه این بلور رنگین است لذا نور سفید از آن عبور نمی‌کند.

 آنالیزور (Analyser)آنالیزور یک پلاریزور دیگر است که نحوه کار آن دقیقا مشابه پلاریزر است بجز آنکه محل نصب آن در پشت پلاریزور واقع می‌باشد. آنالیزور در میکروسکوپهای پلاریزان بین عدسی شیئی و چشم مشاهده کننده واقع است. موقعی که در میکروسکوپها از منشور نیکول استفاده می‌شود. معمولا آنرا درست بالای عدسی شیئی و یا درست بالای عدسی چشمی قرار می‌دهند تا از ایجاد مانع در مقابل نور جلوگیری نماید و لیکن در میکروسکوپهایی که از فیلترهای پلاروئید به عنوان آنالیزور استفاده می‌شود این ----- در داخل لوله عدسی نصب می‌گردد و دارای ورنیه می‌باشد که درصد چرخش آنرا می‌توان مشخص نمود.

عمدتاً وقتی که نمونه‌ها را بوسیله نور پلاریزه مورد تابش قرار دهیم و مشاهده نمائیم تصویر مشابه حالتی است که از نور غیر پلاریزه استفاده می‌شود. اما وقتی که در مقابل آن یک آنالیزور قرار دهیم در آنصورت مشاهده می‌شود که با چرخش آنالیزور در جهات مختلف روشنایی تصویر متفاوت خواهد بود. در حالتی که محور پلاریزاسیون پلاریزور و آنالیزور بر همدیگر عمود باشند، در آن صورت نوری از آن به چشم مشاهده گر نمی‌رسد و در صورتی که دو محور به موازات هم باشند حداکثر نور خارج می‌شود. در این صورت می‌توان تأثیر نمونه در چرخش نور را مشاهده و اندازه گیری نمود. در حالتی که محور پلاریزاسیون پلاریزور و آنالیزور بر همدیگر عمود باشند کلیه نورهایی که مستیقما از پلاریزور به آنالیزور می‌رسند متوقف می‌شوند و از آن خارج نمی‌شوند و تنها آن بخش از نورهایی که بوسیله نمونه خارج و تغییر جهت داده می‌شود بوسیله آنالیزور عبور داده می‌شود و می‌توان بنابراین تأثیر نمونه را بر روی نور پلاریزه عبوری مطالعه نمود.عدسی های مختلفی که در ساختمان میکروسکوپهای پلاریزان مورد استفاده قرار می‌گیرد بایستی بدون هیچگونه رگه باشد و علاوه بر آن نبایستی خود دارای اثر پلاریزه کنندگی باشند. در صورتی که از میکروسکوپ های معمولی بخواهیم برای بررسی خواص کندانسور استفاده نماییم باید آن را آزمایش نمود که این اشکالات در آنها وجود نداشته باشد. وجود زاویه در هر یک از عدسیها خود می‌تواند موجب اثر پلاریزه کنندگی نور شود و بنابراین برای مطالعه نمونه‌هایی که خاصیت پلاریزه کنندگی آنها کم است بهتر است روزنه نور را تا حدممکن کم نمود تا تأثیر زاویه دار بودن کمتر شود.

وسایل ملحقات یک میکروسکوپ پلاریزان

با اضافه کردن وسایل لازمه به یک میکروسکوپ به گونه‌ای که بتوان در آن از نور پلاریزه استفاده نمود اطلاعات مفیدی از نمونه‌ها می‌توان بدست آورد. در حالت بسیار ساده می‌توان با افزودن یک صفحه ساده پلاریزور و یک صفحه آنالیزر که بشود آنها را چرخاند می‌تواند این کار انجام شود. لیکن در اندازه گیریهای دقیق و مواقعی که اندازه گیری مقداری مورد نیاز باشد بایستی از میکروسکوپ پلاریزان استفاده شود. تجهیزات اضافی یک میکروسکوپ پلاریزان را می‌توان بطور مختصر بصورت زیر برشمرد:

پلاریزور و آنالیزور که بتوانند به داخل و یا خارج محل های مربوطه منتقل شوند و همچنین حول محور قائم بچرخند و در ضمن جهت آنها نیز نسبت به همدیگر قابل تعیین باشد.

خطوط متقاطع که بر روی چشمی نصب شوند بگونه‌ای که بتواند پس از نصب و تنظیم ثابت شوند و از چرخش آن جلوگیری نماید.

خارهایی که بتوان خطوط را بطور ثابت بطرف شمال – جنوب ، شرق – غرب یا در زاویه 45 درجه نسبت به این جهت ها قرار دهد.

پایه نگه دارنده نمونه (machanical stage) که بتوان آنرا به تدریج بوسیله یک ورنیه چرخاند.

وسیله مناسب برای چرخاندن و یا انتقال پایه (stage) و هم محور کردن با محور اپتیکی.

شیارهایی در بدنه جهت وارد کردن جبران کننده. جبران کننده‌ها در زیر پلاریزر در شکاف مخصوص خود قرار می‌گیرند. این وسایل جهت جبران تأخیر فاز نمونه‌های بلورین ناشناخته بکار می‌روند.

تاريخچه ميكروسكوپ هاي الكتروني يكي از پركاربردترين ابزار 

پس از جنگ جهاني دوم ، استفاده از ميكروسكوپ الكتروني و كاربرد آن براي بررسي برش هاي بسيار نازك ياخته ها انكان پيشرفت هاي شگرفي را به زيست شناسي ياخته اي داده و در موارد متعددي مفاهيمي را دگرگون ساخته است كه گمان مي رفته پي ريزي استواري داشته باشند. توان تفكيك ميكروسكوپ وابسته به طول موج نور به كار رفته است . استفاده از اشعه داراي طول موج كوتاه تر بتوان حدود 3000 برابر را ميسر ساخت و اميد نمي رفت كه با استفاده از اشعه داراي طول موج كوتاه تر بتوان از اين حد گذشت . تا دهه ي 1940 دانش ما راجع به ساختمان و سازمان بندي سلول ها عمدتا توسط مطالعه با ميكروسكوپ نوري حاصل شده بود و اجزاي سلولي نظير ديواره سلولي ، هسته ، كروموزوم ، كلروپلاست ، ميتروكندري ،سانتريول ، مژك و تاژك تا آن زمان توصيف و تشريح شده بودند . 
ميكروسكوپ الكتروني تنها وسيله اي است كه امكان مطالعه فراساختار ساختمان زيستي را فراهم مي آورد و قدرت تفكيك آن بسيار بالاتر از ميكروسكوپ نوري است . براي ايجاد تصوير در اين ميكروسكوپ ها از پرتوهاي الكتروني كه طول موج بسيار كوتاهي حدود 0.05 آنگستروم دارند استفاده مي شود. اين ميكروسكوپ ها ساختماني به مراتب پيچيده تر از ميكروسكوپ نوري دارند اما هر دو در اصول كلي به يكديگر شبيه اند . 
در هر دو نوع ميكروسكوپ نوري و الكتروني منبع نور، رشته تنگستن ملتهب شده به وسيله جريان برق مي باشد . در ميكروسكوپ نوري ، نور ساطع شده از چنين رشته اي به وسيله كندانسور بر روي نمونه اي كه مي خواهمي مشاهده كنيم متمركز مي گردد. در ميكروسكوپ الكتروني ، كندانسور بر روي نمونه اي كه مي خواهيم مشاهده كنيم متمركز مي گردد . در ميكروسكوپ الكتروني كندانسور الكترون ها متصاعد شده از اتم هاي تنگستن تهييج شده را به صورت يك ستون يا دسته الكتروني در آورده كه توسط الكترود ها به طرف نمونه شتاب داده مي شوند . در ميكروسكوپ نوري اين كندانسور از يك يا چند لنز شبشه اي به وجود آمده در صورتي كه كندانسور ميكروسكوپ الكتروني ازچندين الكترومكنت بزرگ حلقوي ايجاد شده است . در هر دو ميكروسكوپ پرتو ها از درون نمونه عبور نموده و سپس توسط لنز شيئي با ابژ كتيف مجددا جمع آوري مي گردند . آخرين لنز ميكروسكوپ ميكروسكوپ نوري آلولار يا عدسي چشمي اس كه از طريق آن به وسيله تصوير به وسيله چشم شخص مشاهده كننده قابل رويت مي باشد . تصوير ميكروسكوپ الكتروني بر روي صفحه اي از جنس سولفيد روي بازتابي شده و بر روي آن قابل رويت مي باشد تصوير ميكروسكوپ الكتروني بر روي صفحه اي از جنس سولفيد روي بازتابي شده و بر روي آن قابل رويت است مولكول هاي اين صفحه به وسيله الكترون هايي كه به ان برخورد مي نمايند تهييج شده و در خلال بازگشت آن ها به حالت اوليه ، نور مرئي از خود ساطع مي نمايند با كنار زدن صفحه سولفيد روي تصوير را مي توان بر روي يك فيلم عكاسي نيز تثبيت نمود. 
در ميكروسكوپ الكتروني تنظيم به وسيله تغيير دادن ولتاژي كه به سيم پيچ يا لنز هاي الكترومگنت مي رسد حاصل مي گردد اين تغيير ولتاژ ميدان مغناطيسي كه الكترون ها بايد از آن عبور كنند را تغيير مي دهد براي جلوگيري از تصادم الكترون ها با مولكول هاي هوا و پراكنده شدن آن ها كل سيستم ميكروسكوپ الكتروني در ستوني كه هواي آن تخليه مي گردد تعبيه شده است و در محيط خلا عمل مي نمايند . براي جلوگيري از تفرق يا جذب بيش از حد الكترون ها توسط نمونه بايستي مقاطع فوق العاده نازكي تهيه نماييم .